Methyl ethers of some N-acetyl-N-arylpentopyranosylamines*

ZYGFRYD SMIATACZ

Institute of Chemistry, University of Gdansk, 80952 Gdansk (Poland) (Received April 17th, 1974; accepted for publication, July 11th, 1974)

Although literature reports on methyl ethers of N-glycosides are numerous¹⁻⁶, those concerning methyl ethers of N-acetyl-N-arylglycopyranosylamines are lacking. We now report on some N-acetyl-N-aryl-O-methyl- β -D-xylopyranosylamines (1-9) and - α -L-arabinopyranosylamines (10-15).

$$R^3$$
 R^2
 R^1
 AC

$$\begin{array}{l} 1 \ \, \text{X} = \text{OMe} \\ 2 \ \, \text{X} = \text{CI} \\ 3 \ \, \text{X} = \text{Br} \\ 4 \ \, \text{X} = \text{OMe} \\ 5 \ \, \text{X} = \text{Br} \\ 6 \ \, \text{X} = \text{OMe} \\ 7 \ \, \text{X} = \text{CI} \\ \end{array} \right\} \, \begin{array}{l} R^1 = R^2 = R^3 = \text{OMe} \, , \, R^4 = \text{H} \\ \text{9} \ \, \text{X} = \text{CI} \\ \text{10} \ \, \text{X} = \text{CI} \\ \text{10} \ \, \text{X} = \text{CI} \\ \text{11} \ \, \text{X} = \text{Br} \\ \text{12} \ \, \text{X} = \text{CI} \\ \text{13} \ \, \text{X} = \text{Br} \\ \end{array} \right\} \, \begin{array}{l} R^1 = R^2 = R^4 = \text{OMe} \, , \, R^4 = \text{H} \\ \text{12} \ \, \text{X} = \text{CI} \\ \text{13} \ \, \text{X} = \text{Br} \\ \text{14} \ \, \text{X} = \text{CI} \\ \text{15} \ \, \text{X} = \text{Br} \\ \end{array} \right\} \, R^1 = R^2 = \text{OMe} \, , \, R^3 = \text{H} \, , \, R^4 = \text{OMe} \, ,$$

16
$$X = CI$$
 $R^1 = R^2 = R^3 = OMe, R^4 = H$
18 $X = CI$
19 $X = Br$
 $R^1 = R^2 = R^4 = OMe, R^3 = H$
19 $X = Br$

N-Acetylated N-p-methoxyphenyl-, N-p-chlorophenyl-, and N-p-bromophenyl- β -D-xylopyranosylamines⁷ as well as N-p-chlorophenyl- and N-p-bromophenyl- α -L-arabinopyranosylamines⁸ were methylated by the Kuhn method⁹, using two equivalents of methyl iodide for each hydroxyl group. The products comprised

^{*}Ester and Ether Derivatives of Glycopyranosylamines: Part VII. For Part VI, see Ref. 14.

NOTE 345

mainly (70%) tri- (1-3 and 10-11) and di-O-methylated (4 and 5, 12 and 13) N-acetyl-N-aryl- β -D-xylo- and - α -L-arabino-pyranosylamines, respectively.

Compounds 1, 2, 10, and 11 were also obtained ($\sim 10\%$) by N-acetylation of 16, 17, 18, and 19 with acetic anhydride-anhydrous sodium acetate, at $\sim 120^{\circ}$. Attempts to obtain 1, 3, 10, and 11 by Frèrejacque's method¹⁰ failed. The multicomponent reaction mixtures comprised neither starting materials nor the expected products. Thus, the tri-O-methylated compounds differed largely from tri-O-acylated D-xyloand L-arabino-pyranosylamines^{7,11,12}.

That HO-3 in 4 and 5 was unsubstituted was shown by a shift (~ 0.3 p.p.m) of the H-3 signal on methylation¹³. Similarly, comparison of the n.m.r. spectra of 10-15 suggests that HO-4 in 12 and 13 is unsubstituted.

N-Acetyl-N-p-methoxyphenyl (6) and N-acetyl-N-p-chlorophenyl (7) derivatives of 3,4-di-O-benzoyl-2-O-methyl-β-D-xylopyranosylamine were obtained by methylation of the 3,4-di-O-benzoyl derivatives¹⁴. Compounds 6 and 7 were O-debenzoylated to give 8 and 9. The method of preparation of 8 and 9 suggests that the methoxyl group is attached to C-2 if no acyl migration had occurred. Supporting evidence for O-2 methylation was afforded by periodate oxidation (1 mol. uptake), and by the observation of only a very small change in the position of the H-2 signal in the n.m.r. spectra of compounds 1-5, 8, and 9.

The coupling constants for H-1 (d, $J_{1,2}$ 8 Hz), and for H-2 and H-3 (t, $J_{2,3} \approx J_{3,4} \approx 8$ Hz, Table II) imply that, in 1-9, H-1,2,3,4 are axial and suggest that the compounds exist in a 4C_1 conformation with a β -D configuration at C-1.

An α -L configuration at C-1 and a 4C_1 conformation for 10–15 is suggested by the nature of the signals for H-1 (d) and H-2 (t), and the coupling constants $(J_{1,2} \approx J_{2,3} \approx 9 \text{ Hz}, \text{ and } J_{3,4} \text{ 3 Hz}, \text{ Table II)}$ which indicate H-1,2,3 to be axial and H-4 to be equatorial. A pyranosidic structure of 1–15 is supported by the i.r. absorption bands at ~ 910 and 780 cm^{-1} (Table I).

The data in Table II reveal that (1) substitution of HO by MeO results in a diamagnetic shift (0.3–0.4 p.p.m.) of the signal of the proton attached to the relevant atom; (2) methylation of HO-4 is accompanied by a downfield shift of 0.2 p.p.m. of the signal for H-5e in 1–5 and 0.1 p.p.m. for 10–13. Thus, $\Delta\delta$ H5e, H5a for 1–5 is 0.80 p.p.m., and ~0.60 p.p.m. for N-acetyl-N-aryl- β -D-xylopyranosylamines and their ester derivatives¹¹; (3) replacement of eq MeO-4 by ax MeO-4 results in a downfield shift of the signal for H-2 by ~0.30 p.p.m.

On the basis of the n.m.r. data published for O-methylated p-glucose, p-mannose, p-galactose, and other saccharide derivatives¹⁵⁻¹⁷, and recorded in Table II, the signals at $\delta \sim 3.28$, ~ 3.48 , and ~ 3.38 for 1-5 and 8-9 have been assigned to MeO-2, MeO-3, and MeO-4, respectively.

For 10 and 11, the signals at δ 3.26, 3.32, and 3.38 were assigned to MeO-2, MeO-3, and MeO-4, respectively, since on passing from the spectra of 1-3 (D-xylose derivatives) to those of 10 and 11 (L-arabinose derivatives), the chemical shifts of the signals for MeO-2 and MeO-4 are not likely to be changed noticeably 16,17 , whereas the signal for MeO-3 should appear at a higher field $^{15-17}$ (usually 0.3 p.p.m. 15).

TABLE I METHYL ETHERS OF N-acetyl-N-aryl- and N-aryl- β -d-xylopyranosylamines and $-\alpha$ -L-arabinopyranosylamines

Compound	Yield (%)	M.p.	Rotatio	n (c 0.5)	$v_{\max} (cm^{-1})^a$				
	(70)	(degrees)	$[\alpha]_{\mathbf{D}}^{20}$	[M]	C=O (ester)	C-O-C (ether)	Ring vibration		
							Asymmetric	Symmetric	
1	55 ^b	105–108	+80ª	+271		1090 vs	910m	_	
2	80 ⁵	111-112	+80°	+275	_	1090 vs	910m	780s	
3	63 ^b	88–90	$+77^{d}$	+299		1095 vs	915m	780s	
4	10	131-132	+95ª	+309		1085 vs	915m	785s	
5	12	114-117	$+88^{d}$	+333		1090 vs	915m	780s	
6	80	116-118	-3°	-15	1720 vs	1090 vs	900 m		
7	85	122-125	-1°	-5	1725 vs	1090 vs	905m	775 m	
8	40	syrup	+684	+214	_	1080 vs	910m	785m	
9	45	syrup	+64ª	+202	_	1075 vs	910m	780 m	
10	60 ^b	106-108	$+166^{d}$	+567		1085 vs	920m	780m	
11	65 ^b	99-102	$+102^{d}$	+396		1085 vs	910 m	775 m	
12	12	syrup	+ 1274	+419		1085 vs	920m	780m	
13	10	syrup	$+109^{a}$	+408		1085 vs	920 m	780m	
14	90	syrup	$+80^{d}$	+297	1740 vs	1095 vs	905 m	775 m	
15	85	syrup	+72ª	+302	1740 vs	1090 vs	910m	$780\mathrm{m}$	
16	65 ^b	135-136	84ª	-242		1085 vs	915m		
17	60 ^b	137-138	-72ª	-249		1095 vs	910m	785 m	
18	53b	115-118	+152d	+457	-	1095 vs	905m	780 m	
19	55°	134-138	$+178^{4}$	+616	_	1085 vs	910w	785 m	

[&]quot;Only important bands are given. "Yields of methylation reaction by the Kuhn method. "In ethanol. "In chloroform. "Solvent system B.

Similarly, in the spectra of 10 and 11 and 2-O-methylated N-acetyl-N-aryl- α -L-arabinopyranosylamines 18, a signal due to MeO-2 of 12 and 13 occurs at $\delta \sim 3.28$, whereas that due to MeO-3 is, as expected 17, shifted upfield by ~ 0.10 p.p.m. (i.e., $\delta \sim 3.22$). The substitution of HO-4 (12 and 13) by Ac (14 and 15) is accompanied only by a small paramagnetic shift of the signal for MeO-3.

The results show that HO-3 in N-acetyl-N-aryl- β -D-xylopyranosylamines and HO-4 in N-acetyl-N-aryl- α -L-arabinopyranosylamines are the least reactive towards methylation. The relative reactivity of the hydroxyl groups is different from that observed on esterification of the two compounds^{14,18} with benzoyl chloride in pyridine.

O-Methylation of the corresponding N-aryl- β -D-xylopyranosylamines⁷ and $-\alpha$ -L-arabinopyranosylamines¹² by the Kuhn method⁹ gave, as the sole, identifiable products, the 2,3,4-tri-O-methylated derivatives 16–19 as crystalline, anomeric mixtures. Analogous compounds were obtained earlier by Lipták and Bognár who employed another method⁴.

Compounds 16-19 were also obtained (in 15% yield) by N-deacetylation

R _F	Analysis (%)						
(solvent system A)	Molecular formula	С		H		N	
		Calc.	Found.	Calc.	Found	Calc.	Found
0.62	C ₁₇ H ₂₅ NO ₆	60.17	60.00	7.37	7.35	4.15	4.05
0.65	C ₁₆ H ₂₂ CINO ₅	55.84	<i>55.</i> 77	6.39	6.25	4.07	3.95
0.63	C ₁₆ H ₂₂ BrNO ₅	49.48	49.30	5.67	5.53	3.60	3.50
0.30	$C_{16}H_{25}NO_6$	59.07	58.88	7.07	6.95	4.30	4.25
0.37	C ₁₅ H ₂₀ BrNO ₅	48.12	48.07	5.34	5.20	3.74	3.58
0.60	$C_{29}H_{29}NO_8$	67.05	66.90	5.58	5.45	2.69	2.65
0.68	C28H26CINO7	64.00	63.85	5.33	5.17	2.66	2.58
0.42 ^e	$C_{15}H_{21}NO_6$	57.87	57.70	6.75	6.70	4.50	4.42
0.45°	C ₁₄ H ₁₈ ClNO ₅	53.33	53.10	5.71	5.65	4.44	4.30
0.45	C ₁₆ H ₂₂ ClNO ₅	55.84	55.70	6.39	6.35	4.07	3.90
0.49	C ₁₆ H ₂₂ BrNO ₅	49.48	49.32	5.67	5.48	3.60	3.65
0.22	C ₁₅ H ₂₀ ClNO ₅	54.71	54.48	6.07	5.93	4.25	4.15
0.33	C ₁₅ H ₂₀ BrNO ₅	48.12	47.88	5.34	5.28	3.74	3.52
0.40	C ₁₇ H ₂₂ CINO ₆	54.98	54.76	5.92	5.87	3.77	3.62
0.42	$C_{17}H_{22}BrNO_6$	49.03	48.78	5.28	5.03	3.36	3.20
0.73, 0.82	C ₁₄ H ₂₀ ClNO ₄	55.70	<i>55.</i> 98	6.68	6.66	4.64	4.39
0.75, 0.85	C ₁₄ H ₂₀ BrNO ₄	48.55	48.26	5.82	5.72	4.05	4.15
0.68, 0.77	C ₁₄ H ₂₀ ClNO ₄	<i>55.</i> 70	55.15	6.68	6.66	4.64	4.50
0.64, 0.73	C ₁₄ H ₂₀ BrNO ₄	48.55	48.45	5.82	5.85	4.05	4.20

(Zemplén) of 2, 3, 10, and 11. Attempts to obtain 15-19 by N-deacetylation of 2, 3, 10, and 11 with methanolic dimethylamine failed, in contrast to the behaviour of O-acetylated N-acetyl-N-arylpentopyranosylamines^{11,12,18}.

EXPERIMENTAL

Melting points are uncorrected. Optical rotations were measured with a Hilger-Watt polarimeter. T.l.c. was carried out on silica gel G, using A carbon tetrachloride-acetone (3:1), B carbon tetrachloride-acetone (1:1.5). Chromatography was performed on columns of Kieselgel (<0.08 mm), using the above solvent systems. N.m.r. spectra were recorded on a Tesla-BS 487 C (80 MHz) spectrometer with Me₄Si as the internal reference. Spin decoupling was accomplished by the field-sweep technique. I.r. spectra were obtained with a Perkin-Elmer 257 spectrophotometer.

Methylation of N-acetyl-N-aryl- β -D-xylopyranosylamines and - α -L-arabino-pyranosylamines. — N-Acetyl-N-aryl- β -D-xylopyranosylamines and - α -L-arabino-pyranosylamines (0.02 mole) were methylated with N,N-dimethylformamide (60 ml),

TABLE II
P.M.R. SPECTRAL DATA" FOR COMPOUNDS 1-15

			-													
Compound	H-I	H-2	Н-3	H-4	H-5e	H-Sa	AH-Se H-Sa	J _{1,2}	J _{2,3}	J4,50	J4,50 J5c,50 MeO-2 MeO-3 MeO-4 NAC	MeO-2	MeO-3	MeO-4	NAc	ОАс
					1											
_	5.58d	2.60t	3.28	2,98	٠.,	3.18	0.80	9	2	٣	-12	3.30	3.50	3.38	1 78	I
7	5.56d	2.60t	3.30	3.00		3.18	0.80	9.5	9.5	3	-12	3.28	3.48	3.38	1.80	!
63	5.56d	2.60t	3.30	2.98		3.18	0.80	9	0	3	-12	3.28	3.48	3.38	1.80	I
4	5.62d	2.62t	3.60t	3.00m	~	3.20t	0.80	9.5	9.5	က	-12	3.30	į	3.36	1.80	i
w	5.60d	2.62t	3.58t	3.00m	•	3.20t	0.82	9.5	9.5	С	-12	3.30	ì	3.36	1.80	i
9	5.90d	3.12t	5.80t	5,00m	•	3.58	0.62	01	10	က	-12	3.22	ì	!	1.80	1
7	5.90d	3.10t	5.78t	5.00m	•	3.60	0.62	10	10	ო	-12	3.18	l	I	1.82	ļ
œ	5.54d	2,65t	l	Ī	•	Ĭ	J	σ,	6	1	I	3.28	I	ļ	1.76	Į
6	5.52d	2,62t	1	ì	•	i	1	6	6	1	I	3.28	l	I	1.80	I
10	5.52d	2.90t	ì	3.54m	•	1	1	9.5	10	٣	i	3.26	3.32	3.38	1.85	i
11	5.50d	2.92 t	1	3.52m	-	i	I	01	10	٣	I	3,26	3.32	3.38	1.85	ł
12	5.48d	2.88t	i	3.94m	•	j	I	σ	σ	က	1	3.28	3.22	ı	1.80	I
13	5.50d	2,901	i	3.94 m	_	1	1	9.5	9.5	3	i	3,28	3.22	ĺ	1.82	i
14	5.50d	2.86t	i	5.10m		ì	I	9.5	91	જ	i	3,28	3.24	i	1.82	1.98
15	5.52d	2.88t	ì	5.15m	3.90q	i	I	10	10	m	I	3.28	3.24	i	1.82	1.96

*Chemical shifts (p.p.m.); d doublet; m multiplet; q quartet; t triplet. Coupling constants (±0.5 Hz) were determined by first-order analysis.

NOTE 349

0.12 mole of methyl iodide, and 0.12 mole of silver oxide at 20° for 12 h by the Kuhn method⁹. The crude, syrupy products were subjected to column chromatography (solvent A) to give 1-5, and 10-13 (Table I).

Likewise, N-aryl- β -D-xylopyranosylamines⁷ and - α -L-arabinopyranosylamines⁸ were methylated, and the crude products were crystallized from ethanol to give 16-19.

The 4-acetates (14 and 15) of 12 and 13 were conventionally prepared, using pyridine-acetic anhydride, and crystallised from methanol or ethanol (Table I).

N-Acetyl-N-p-methoxyphenyl (6) and N-acetyl-N-p-chlorophenyl (7) derivatives of 3,4-di-O-benzoyl-2-O-methyl- β -D-xylopyranosylamine. — N-Acetyl-3,4-di-O-benzoyl-N-p-methoxyphenyl- β -D-xylopyranosylamine¹⁴ (2 mmoles) or the p-chloro analogue¹⁴ was treated with methyl iodide (4 mmoles) and silver oxide (4 mmoles) in N,N-dimethylformamide. Chromatography (solvent A) of the crude products gave 6 and 7.

N-Acetyl-N-p-methoxyphenyl (8) and N-acetyl-p-chlorophenyl (9) derivatives of 2-O-methyl- β -D-xylopyranosylamine. — A solution of 6 and 7 (1 mmole) and dimethylamine (15 mmoles) in 10 ml of dry methanol was stored at room temperature for 120 h. The oily, crude products were subjected to chromatography (solvent B) to give 8 and 9. When oxidized in aqueous methanol solution (3:1) with sodium metaperiodate, 8 and 9 reduced 0.95 and 1.00 mol. of oxidant, respectively.

N-Acetylation of N-aryl-2,3,4-tri-O-methyl-D-xylopyranosylamines and -L-arabinopyranosylamines. — Solutions of 16–19 (5 mmoles) severally in acetic anhydride (15 ml) were refluxed at 120° with sodium acetate (2 mmoles) for 4.5 h, and then poured into ice-water. Insoluble material was dissolved in chloroform, and the solution was neutralized with a 5% aqueous sodium hydrogen carbonate, washed with water, dried (Na_2SO_4), and evaporated to leave a syrup. Chromatography (solvent A) gave unchanged 16–19 (80%), and 2, 3, 10, or 11 (10%), respectively.

N-Deacetylation of N-acetyl-N-aryl-2,3,4-tri-O-methyl- β -D-xylopyranosylamines (2-3) and - α -L-arabinopyranosylamines (10-11). — To a solution of 2, 3, 10, or 11 (0.5 mmole) in methanol (20 ml) was added 0.1 mmole of sodium methoxide in methanol (10 ml). The reaction mixture was heated at 65° and monitored by t.l.c. After 2.5 h, the solution was cooled, neutralized with acetic acid, and concentrated. Water was added and the solution was extracted with chloroform. The neutral, dried extract was concentrated to a syrup which was chromatographed (solvent A) to give unchanged 2, 3, 10, or 11 (50%) and 16, 17, 18, or 19 (15%, $\alpha\beta$ -mixtures).

REFERENCES

- 1 J. C. Irvine and A. M. Moodie, J. Chem. Soc., 93 (1908) 95; J. C. Irvine and R. Gilmour, ibid., 93 (1908) 1429; J. C. Irvine and D. McNicoll, ibid., 97 (1910) 1449; E. L. Hirst and J. K. N. Jones, ibid., (1939) 1482; G. P. Ellis and J. Honeyman, ibid., (1952) 2053; R. A. Laidlaw and E. G. V. Percival, ibid., (1949) 1600.
- 2 R. Kuhn and A. Dansi, Ber., 69 (1936) 1745.
- 3 G. P. Ellis and J. Honeyman, Advan. Carbohyd. Chem., 10 (1955) 95.
- 4 A. LIPTÁK AND R. BOGNÁR, Acta Chim. Acad. Sci. Hung., 73 (1972) 335.
- 5 M. L. WOLFROM AND W. L. LEWIS, J. Amer. Chem. Soc., 50 (1928) 837.

350 NOTE

- 6 P. A. LEVENE AND R. S. TIPSON, J. Biol. Chem., 101 (1933) 529.
- 7 J. SOKOLOWSKI AND Z. SMIATACZ, Rocz. Chem., 38 (1964) 1511.
- 8 Z. SMIATACZ, Carbohyd. Res., 34 (1974) 380.
- 9 R. Kuhn, H. Trischmann, and I. Löw, Angew. Chem., 67 (1955) 32; Chem. Ber., 90 (1957) 203.
- 10 M. FRÈREJACQUE, Compt. Rend., 202 (1936) 1190.
- 11 Z. SMIATACZ, Rocz. Chem., 47 (1973) 1161, 1389.
- 12 Z. SMIATACZ AND J. SOKOLOWSKI, Rocz. Chem., 40 (1966) 1473.
- P. C. WOLLWAGE AND P. H. SEIB, J. Chem. Soc., C, (1971) 3143; Carbohyd. Res., 10 (1969) 589;
 P. A. SEIB, ibid., 8 (1968) 101.
- 14 Z. SMIATACZ, Carbohyd. Res., 38 (1974) 117.
- 15 E. B. RATHBONE, A. M. STEPHEN, AND K. G. R. PACHLER, Carbohyd. Res., 20 (1971) 141, 357.
- 16 E. G. GRGS, S. O. MASTRONARDI, AND A. R. FRASCA, Carbohyd. Res., 16 (1971) 232.
- 17 E. B. RATHBONE, A. M. STEPHEN, AND K. G. R. PACHLER, Carbohyd. Res., 21 (1972) 73, 83; 23 (1972) 275.
- 18 Z. SMIATACZ, Rocz. Chem., 48 (1974) 947.